Delay Pattern and Queue Length Estimation for Signalized Intersections Using Mobile Sensors

Xuegang (Jeff) Ban
Rensselaer Polytechnic Institute (RPI)
June 08, 2010
NSF Dynamic Route Guidance and Coordinated Traffic Control Workshop, Rutgers University
What are Mobile Sensors (MS)?

- Traffic sensors that move with the flow they are monitoring and can provide detailed movement of individual vehicles
- A special form of probe vehicles
 - Global Positioning Systems (GPS) based devices
 - Cellular phones (if sufficient location accuracy can be achieved)
 - ETC readers or blue tooth MAC matching (if sufficient density of readers are available)
 - IntelliDrive
- What MS can bring to us?
 - New form of data (i.e. potentially traces of individual vehicles)
 - Tracking capability that enables new traffic network management schemes (mileage fee, path-based pricing, etc.)
MS Data vs. Fixed Location Sensor Data

- Fixed location sensor data: spatially discrete aggregated or disaggregated volume, speed, occupancy for the *entire* traffic flow
- MS data: spatially continuous traces of a *sample* of the traffic flow
- Observations:
 - Standard intersection traffic modeling methods that require volume, speed, occupancy as the input may not be directly used for MS data
 - It is more beneficial to fuse MS data and fixed location data to obtain a more complete picture of the traffic flow
MS Data under Relatively High Penetration

• Current practice: very low penetration

• Relatively high penetration (>=30%) is possible in the future
 – GPS cellular phones: cell phone penetration is nearly 100% in developed countries and 50% in developing countries (ITU, 2009)
 – IntelliDrive: may convert hundreds of thousands of vehicles into mobile sensors

• Opportunities
 – Provide new ways to obtain knowledge of the traffic system and to manage the system

• Challenges
 – New traffic modeling and system modeling techniques
 – Privacy protection
Arterial Modeling Using MS

- Signal performance evaluation
- Arterial traffic estimation and prediction
- Vehicle classification
- Emission modeling
- ...

Signal Performance Evaluation Using MS

• What mobile data to collect/use?
 – Modeling needs
 – Privacy protection (simply removing the IDs would not work!)
 – Cost of collecting the data

• Intersection travel times
 – Collected through Virtual Trip Lines (VTL)
 – Similar to the “Monument” concept (He, et al. 2002; Demers et al, 2006)
 – Preserve privacy (Hoh et al., 2008; Herrera et al., 2010)
I. Intersection Delay Pattern Estimation

• What is intersection delay pattern?
 – The delay an *imaginary* vehicle would have experienced if it had arrived at the intersection at a given time
 – A continuous approximation of the (discrete) measured vehicle delays
 – Helpful to answer questions like (e.g. at 3:00 pm):
 • What was the vehicle delay at 8:00 am at this intersection (*estimation*)?
 • What will the vehicle delay be at 8:00 pm (*prediction*)?
Delay Pattern Estimation Method

• Travel time / delay pattern reflects signal and traffic state changes
• Queue forming and discharging process at a traffic signal
 – Shockwave theory
 – Uniform arrival assumption
 – Linear approximation
 – Well known: Liu et al. (2009)
 Skabardonis and Geroliminis (2005); Lighthill and Whitham (1955); Richards (1956)
• Characteristics of signalized intersection delay patterns
 – Discontinuities: start of red
 – Non-smoothness: change of traffic states such as clear of the queue
• Delay estimation method
 – Reconstruct the piece-wise linear delay pattern from measured delays
Delay Pattern Estimation Method

- Geometry of the triangles
- Signal timing information
- Fundamental diagram

\[s = \frac{u_f (w - u_w)}{w (u_f + u_w)} = \frac{v}{k_j} \left(\frac{1}{u_f} + \frac{1}{w} \right) - 1 \]

- Volume
- Shock wave speed
- Jam density
- Free flow speed

Slope of delay pattern curve
Role of Mobile Sensor Data

- Mobile sensors can directly provide discrete, sampled travel time (or delay) information
- The key is to estimate the (almost continuous) signal delay pattern using discrete sampled travel times
Delay Pattern Estimation Algorithm

• A curve fitting/estimation problem
 ➢ **Cycle breaking.** Detect the start of a new cycle.
 ➢ **Pattern matching.** Fitting the piecewise delay pattern curve using measured delay samples within a cycle by solving an estimation / optimization problem.
 ➢ **Cycle length adjustment** (for pre-timed signals). Calculate the average cycle length; adjust the lengths of neighboring cycles to make each cycle length is close to the average.
Naïve Cycle Breaking

• A threshold can be defined
• If the travel time increase exceeds this threshold, a new cycle starts
• Ideally, this threshold should equal to the red time of the new cycle
• In practice, we multiply a factor $0 < \alpha \leq 1$ to the red time to account for the fact that the exact discontinuity point may not be sampled directly.
Robust Cycle Breaking

- Apply Support Vector Machines (SVM) to travel time data set measured by MS
- Use change in arrival time (dT) and change in delay (dD) between two consecutive samples as the measures
- SVM can be formulated and solved as a quadratic optimization problem
- Test on some field test data
 - Training set: 15 minutes GPS data
 - Test set: 1 hour GPS data
- The penetration rate is 30%.
Experimental Data (C = 60 s)

Training set: magenta and cyan asterisks
Test set: red and blue dots

Error rate: 0.6%

Cycle breaking points

Non-cycle breaking points

\(w \cdot x = b - 1 \)
\(w \cdot x = b \)
\(w \cdot x = b + 1 \)
Pattern Matching Method

- Sample travel times: \(\{d_r, r \in R\} \)
- Timestamps: \(\{t_r, r \in R\} \)
- \(m: 3 \leq m \leq |R|-1 \), dividing all travel times into two groups
- A line needs to be fitted for each group of travel times – equivalent to solve the following quadratic program based on least square

\[
\min_{a_1, b_1, a_2, b_2} \sum_{1 \leq i \leq m-1} (a_1 t_i + b_1 - d_i)^2 + \sum_{m \leq i \leq |R|} (a_2 t_i + b_2 - d_i)^2
\]

s.t. \(a_1[(1-\theta)t_{m-1} + \theta t_m] + b_1 = a_2[(1-\theta)t_{m-1} + \theta t_m] + b_2 \)

Why 30%?
- 2 samples for each line segment
- 2 line segments for one normal cycle
- 3 line segments for one over-saturated cycle
- Assume cycle length = 60 seconds (60 cycles/hour), and 20% cycles are over-saturated
- Total number of required samples: \(2 \times 60 \times (2 \times 0.8 + 3 \times 0.2) = 264 \)
- Assume volume = 900 vph
- Penetration rate = 30%
Results - Albany, CA

• Test site: the intersection of San Pablo Ave and Solano Ave in Albany, CA;
• Intersection is actuated/coordinated with a cycle length 108 s;
• Two sets of wireless traffic sensors installed upstream and downstream of the intersection
• Travel times of 140 vehicles for a 30 minute period (1:00- 1:30 pm) were generated via a vehicle re-identification algorithm, 50% - 60% of all vehicles
Estimated Delay Pattern

- Results: 88% of estimated delays are within 15% of the observed delays
Results - Albany, NY

- A Field test conducted in the Albany, NY area during a PM rush hour in November, 2009.
- 9 Drivers equipped with GPS loggers repeatedly drove over the intersection of Route-4 vs. Jordan Rd by making a left turn onto Route-4 NB.
- Totally 126 travel time measurements were collected. The penetration rate of the equipped vehicles is about 30%.
- Video cameras were located at the upstream and downstream of the intersection to record travel times of all vehicles (ground truth).
RPI Tech Park

Jordan 105/145/165 Parking Lot (Staging Area)

Alexis Dinner Parking Lot

Experimental Site
Results – Albany, NY (30%)

Success rate: 50%
Error: 4.6%; 97.5% under 15%
Evaluated using all samples:
Error: 7.2%; 86.8% under 15%
Results – Albany NY (100%)

Success rate: 80%
Error: 6.7%; 85.6% under 15%
Penetration Rate

Error

Success Rate
II. Queue Length Estimation

• The intersection delay pattern also describes how the queue length varies over time (approximately linearly)
• Also based on the \textit{uniform arrival} assumption
• \textbf{Delay-based} definition of queued vehicles
 – Queued vehicles are usually identified manually by visual assessment
 – Moving queue is hard to define
 – Queued vehicles are associated delays
 – Measure the minimum travel time of all vehicles passing the intersection
 – Use a threshold ΔT to distinguish queued and non-queued vehicles
Queue Length (30%)
Queue Length (100%)
Characteristics of arrival patterns within a cycle:
- **SO**: Spread Out
- **NAB**: No Arrival at the Beginning of the cycle
- **NAM**: No Arrival in the Middle of the cycle
- **NAR**: No Arrival in the Rear of the cycle

Observations:
- Uniform arrival can approximate SO well, but not NAB/NAM/NAR

<table>
<thead>
<tr>
<th>ID</th>
<th>Estimated Queue Length</th>
<th>Observed Queue Length</th>
<th>Relative Percentage Error (%)</th>
<th>Arrival Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.5</td>
<td>9</td>
<td>-27.3</td>
<td>NAM</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>4</td>
<td>17.0</td>
<td>NAR</td>
</tr>
<tr>
<td>3</td>
<td>8.9</td>
<td>11</td>
<td>-18.7</td>
<td>SO</td>
</tr>
<tr>
<td>4</td>
<td>16.5</td>
<td>16</td>
<td>3.4</td>
<td>SO</td>
</tr>
<tr>
<td>5</td>
<td>8.3</td>
<td>8</td>
<td>4.2</td>
<td>NAM/NAR</td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>7.6</td>
<td>8</td>
<td>-4.5</td>
<td>SO</td>
</tr>
<tr>
<td>8</td>
<td>3.9</td>
<td>4</td>
<td>-2.9</td>
<td>SO</td>
</tr>
<tr>
<td>9</td>
<td>11.1</td>
<td>10</td>
<td>11.2</td>
<td>SO</td>
</tr>
<tr>
<td>10</td>
<td>/</td>
<td>1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>11</td>
<td>2.9</td>
<td>3</td>
<td>-4.5</td>
<td>SO</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>4</td>
<td>80.9</td>
<td>NAR</td>
</tr>
<tr>
<td>13</td>
<td>5.2</td>
<td>3</td>
<td>72.0</td>
<td>NAR</td>
</tr>
<tr>
<td>14</td>
<td>8.0</td>
<td>6</td>
<td>33.0</td>
<td>NAB/NAR</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>8.1</td>
<td>-19.4</td>
<td>NAB/NAR</td>
</tr>
<tr>
<td>16</td>
<td>6.4</td>
<td>5</td>
<td>28.2</td>
<td>NAM</td>
</tr>
</tbody>
</table>
Results - NGSIM

• Provided by Federal Highway Administration (FHWA)
• Trajectories were transcribed from video data on a segment of Peachtree Street in Atlanta, Georgia
• Analysis on one intersection for one time period (12:45pm-1:00pm)
Results

30%

100%
Issues and Limitations

• **Uniform arrival** assumption is the most problematic
• A more robust way is to focus on the discharging process
• A new method is under-development to estimate the *position* of a vehicle in the queue based on its delay information – this can provide a lower-bound of the maximum queue size
• **Success Rate**: Under a given penetration rate, the numbers of samples for different cycles may vary. The performance of the algorithm for a cycle depends on the number of samples in that cycle
Conclusions

• Under certain (restrictive) assumptions, intersection delay pattern and queue length can be estimated based on measured travel times from mobile sensors
• Using travel times only can ensure privacy
• The modeling approaches are a combination of basic traffic flow theory (e.g. shockwave theory) and estimation/optimization methods, which in certain sense represent an inverse process of standard intersection modeling approaches using data from fixed location sensors
• Model assumptions need to be relaxed
Future Research

• Relax uniform arrival assumption: study the queue discharging process and the platoon forming/dispersion process (*challenge* is how to model these processes using MS data)
• Estimate signal timing information from MS data
• Additional forms of MS data? Short vehicle traces (for vehicle classification and emission modeling)
• Data fusion
• *Privacy protection vs. data requirements for modeling?*

• Extend the models to arterial traffic modeling and prediction
• *Integrate the models with dynamic network control and guidance models*
Acknowledgement

• USDOT/Caltrans (MM), NYSDOT, RPI
• Nokia: Palo Alto Research Lab
• UC-Berkeley: Alexandre Byen, Ryan Herring, Tom West, JD Mugulici, Pravin Varaiya
• Rutgers: Marco Gruteser
• RPI: Mike Kowalczyk, Peng Hao, Zhanbo Sun
Publications

Thanks You!

• Questions?